Physics 1240: Sound and Music

Today (7/30/19): Percussion: Vibrating Membranes

<u>Next time</u>: The Human Voice, Language

<u>Review</u>

Types of Instruments (Hornbostel–Sachs classification)

- <u>Chordophones</u>: vibrating strings
- <u>Aerophones</u>: vibrating columns of air
- <u>Idiophones</u>: vibrating the whole instrument
- <u>Membranophones</u>: vibrating membrane/skin
- <u>Electrophones</u>: vibrating loudspeaker

<u>Review</u>

Idiophones

- <u>Striking</u> an object at any given point will sound each natural mode in proportion to how much that mode involves motion of that point
- Fixing an object to any given point will sound each natural mode that has a node at that point

Musical Saw

https://www.youtube.com/watch?v=Qm8BuOQwX4c

https://www.youtube.com/watch?v=QhTdBrOxteU

https://www.youtube.com/watch?v=lzk-18Gm0MY

If a musical saw is played by rubbing a bow along its side while NOT holding the free end, where should the bow be placed to most effectively remove the second natural mode?

If a musical saw is played by rubbing a bow along its side while NOT holding the free end, where should the bow be placed to most effectively remove the second natural mode?

What about other percussion instruments?

Stonehenge

https://www.youtube.com/watch?v=ppnhKwXXL40

Chladni Figures

- Ernst Chladni (1787)
 (studied law & philosophy at University of Leipzig)
- Demonstrated the natural modes of vibration for a square plate

For a particular natural mode on a Chladni plate, what do the spots with sand show?

A) nodesB) antinodesC) something of

C) something else

For a particular natural mode on a Chladni plate, what do the spots with sand show?

A) nodes

B) antinodes

C) something else

Chladni Figures

- Vibrations of 2D systems: nodes/antinodes are lines/curves instead of points
- Modes labelled with 2 numbers instead of 1
 - e.g. Mode (1,1), Mode (1,3), Mode (2,4), etc.
- Modes with the same number twice have integer-multiple frequencies; others do not

<u>Violin</u>

https://www.youtube.com/watch?v=3uMZzVvnSiU)

10th 12th-13th 13th century: 15th-16th 16th-17th 16th-18th

Chladni Figures: circular modes

• Modes labelled by number of linear and circular nodes

(1,2)

Which natural mode is shown in the image below? Circular membrane modes are labelled as (# linear nodes, # circular nodes)

A) (0,1)
B) (1,1)
C) (2,1)
D) (3,1)

m = 2, n = 1, $f_{21} = 2.14f_{01}$

Which natural mode is shown in the image below? Circular membrane modes are labelled as (# linear nodes, # circular nodes)

A) (0,1)
B) (1,1)
C) (2,1)
D) (3,1)

 $m=2, \quad n=1, \quad f_{21}=2.14f_{01}$

Which natural mode is shown in the image below?

A) (0,1)
B) (0,2)
C) (1,1)
D) (1,0)
E) (2,2)

Which natural mode is shown in the image below?

Vibrating Sheets/Membrane

- Instrument examples: thunder sheet, gongs, cymbals, bells, drums
- An Alpine Symphony by Richard Strauss <u>https://www.youtube.com/watch?time_continue=2443&v=eQa</u> <u>9mW8ygAE</u>

Cymbal / Gong

https://www.youtube.com/watch?v=kpoanOlb3-w

<u>Bells</u>

• Same as a circular sheet, but bent

(frequencies slightly different)

(2,0) mode: 261.8 Hz

(3,0) mode: 770.9 Hz

(3,1) mode: 1250.6 Hz

(4,1) mode: 1334.5 Hz

Drum Modes

- Same as circular sheet, but with one restriction
 - Edge must be a circular node

Drum Modes

• What about the timpani?

https://www.youtube.com/watch?v=wgcMG4EijSo

- Membrane has to move air
- f_n depends on bowl shape
- Fundamental damps away quickly
- Striking point damps out many modes

Damping time

- Damping time: time it takes for a sound to vanish
- Sound will never completely vanish—damping time measures how long it takes to drop 60 dB

How much (by what factor) does the intensity of a sound drop if it decays 60 dB?

- A) 1/60
 B) 1/100
 C) 1/2
 D) 1/1,000
- E) 1/1,000,000

How much (by what factor) does the intensity of a sound drop if it decays 60 dB?

- A) 1/60
- B) 1/100
- C) 1/2
- D) 1/1,000
- E) <u>1/1,000,000</u>

Steel Drum

https://www.youtube.com/watch?v=Ne4eutIKH7Q

